कोड नं. Code No. 56/1

Series SGN

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्र में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

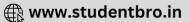
CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70 Time allowed : 3 hours Maximum Marks : 70 56/1 1 P.T.O. Get More Learning Materials Here : ■ CLICK HERE W www.studentbro.in सामान्य निर्देशः

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं ।
- (vi) प्रश्न संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमति नहीं है ।

General Instructions :

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carries 4 marks.
- (vi) Questions number 24 to 26 are long answer questions and carry 5 marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- FeO का विश्लेषण दर्शाता है कि इसका Fe_{0.95}O सूत्र सहित नॉन-स्टॉइकियोमीट्री संघटन होता है । कारण दीजिए ।


Analysis shows that FeO has a non-stoichiometric composition with formula $\rm Fe_{0.95}O.$ Give reason.

2. CO (g) और H₂ (g) भिन्न उत्प्रेरकों की उपस्थिति में अभिक्रिया करके भिन्न-भिन्न उत्पाद देते हैं । इन अभिक्रियाओं द्वारा उत्प्रेरक की कौन-सी क्षमता प्रदर्शित होती है ? CO (g) and H₂ (g) react to give different products in the presence of different catalysts. Which ability of the catalyst is shown by these reactions ?

56/1

CLICK HERE

>>>

1

 संकुल [Pt(en)₂Cl₂] में प्लैटिनम की उपसहसंयोजन संख्या और ऑक्सीकरण अवस्था लिखिए।

Write the coordination number and oxidation state of Platinum in the complex $[Pt(en)_2Cl_2]$.

4. क्लोरोबेन्ज़ीन और बेन्ज़िल क्लोराइड में से कौन-सा जलीय NaOH द्वारा आसानी से जल-अपघटित हो जाता है और क्यों ?

Out of chlorobenzene and benzyl chloride, which one gets easily hydrolysed by aqueous NaOH and why ?

5. निम्नलिखित का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{array}{cccc} & & & {\rm CH_3} \\ | & & \\ {\rm CH_3} & - & {\rm C} & - & {\rm CH} & - & {\rm CH_3} \\ & & | & & | \\ & & {\rm C_2H_5} & {\rm OH} \end{array}$$

Write the IUPAC name of the following :

$$\begin{array}{cccc} & {\rm CH}_3 \\ | \\ {\rm CH}_3 & - & {\rm C} & - & {\rm CH} & - & {\rm CH}_3 \\ | & | \\ & {\rm C}_2 {\rm H}_5 & {\rm OH} \end{array}$$

6.250 g पानी में 60 g ग्लूकोस (मोलर द्रव्यमान = 180 g mol^{-1}) मिलाने पर बने विलयन का
हिमांक परिकलित कीजिए । (पानी के लिए $K_f = 1.86 \text{ K kg mol}^{-1}$)
Calculate the freezing point of a solution containing 60 g of glucose
(Molar mass = 180 g mol^{-1}) in 250 g of water.
(K_f of water = 1.86 K kg mol^{-1})

For the reaction

$$2N_{2}O_{5}\left(g\right) \ \longrightarrow \ 4NO_{2}\left(g\right) + O_{2}\left(g\right),$$

the rate of formation of NO₂ (g) is 2.8×10^{-3} M s⁻¹. Calculate the rate of disappearance of N₂O₅ (g).

56/1

CLICK HERE

>>

P.T.O.

1

1

1

2

 $\mathbf{2}$

- 8. वर्ग-15 के तत्त्वों के हाइड्राइडों में से,
 - (a) किसका निम्नतम क्वथनांक होता है ?
 - (b) किसकी अधिकतम क्षारकीय प्रकृति होती है ?
 - (c) किसका उच्चतम आबंध कोण होता है ?
 - (d) किसकी अधिकतम अपचायी प्रकृति होती है ?

Among the hydrides of Group-15 elements, which have the

- (a) lowest boiling point ?
- (b) maximum basic character ?
- (c) highest bond angle ?
- (d) maximum reducing character ?
- 9. आप निम्नलिखित का रूपांतरण कैसे करते हैं ?
 - (a) एथेनैल को प्रोपेनॉन में
 - (b) टॉलूईन को बेन्ज़ोइक अम्ल में

अथवा

निम्नलिखित के लिए कारण दीजिए :

- (a) ऐरोमेटिक कार्बोक्सिलिक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करते हैं।
- (b) 4-नाइट्रोबेन्ज़ोइक अम्ल का pK_a मान बेन्ज़ोइक अम्ल के pK_a मान से कम होता है।

How do you convert the following ?

- (a) Ethanal to Propanone
- (b) Toluene to Benzoic acid

OR

Account for the following :

- (a) Aromatic carboxylic acids do not undergo Friedel-Crafts reaction.
- (b) pK_a value of 4-nitrobenzoic acid is lower than that of benzoic acid.

56/1

Get More Learning Materials Here : 💻

R www.studentbro.in

2

10. निम्नलिखित रासायनिक समीकरणों को पूर्ण एवं संतुलित कीजिए :

(a)
$$\operatorname{Fe}^{2+} + \operatorname{MnO}_{4}^{-} + \operatorname{H}^{+} \longrightarrow$$

(b)
$$MnO_4^- + H_2O + I^- \longrightarrow$$

Complete and balance the following chemical equations :

(a)
$$\operatorname{Fe}^{2+} + \operatorname{MnO}_{4}^{-} + \operatorname{H}^{+} \longrightarrow$$

(b)
$$MnO_4^- + H_2O + I^- \longrightarrow$$

11. निम्नलिखित के लिए कारण दीजिए :

- (a) प्रोटीनों और बहुलकों जैसे बृहदाणुओं के मोलर द्रव्यमान ज्ञात करने के लिए परासरण दाब मापन विधि को वरीयता दी जाती है ।
- (b) जलीय जन्तुओं के लिए गर्म जल की तुलना में ठंडे जल में रहना अधिक आरामदायक होता है।
- (c) 1 M KCl विलयन का क्वथनांक उन्नयन 1 M शर्करा विलयन के क्वथनांक उन्नयन से लगभग दुगुना होता है ।

Give reasons for the following :

- (a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.
- (b) Aquatic animals are more comfortable in cold water than in warm water.
- (c) Elevation of boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.
- 12.फलक-केन्द्रित घनीय (f.c.c.) संरचना वाले एक तत्त्व 'X' (परमाणु द्रव्यमान = 40 g mol^{-1})के एकक कोष्ठिका कोर की लम्बाई 400 pm है । 'X' के 4 g में उपस्थित एकक कोष्ठिकाओंकी संख्या तथा 'X' का घनत्व परिकलित कीजिए । $(N_A = 6.022 \times 10^{23} \text{ mol}^{-1})$

P.T.O.

2

3

An element 'X' (At. mass = 40 g mol⁻¹) having f.c.c. structure, has unit cell edge length of 400 pm. Calculate the density of 'X' and the number of unit cells in 4 g of 'X'. (N_A = $6.022 \times 10^{23} \text{ mol}^{-1}$)

56/1

Get More Learning Materials Here :

5

CLICK HERE

>>

13.किसी प्रथम कोटि की अभिक्रिया को 50% पूर्ण होने के लिए 300 K पर 40 मिनट लगते हैं
और 320 K पर 20 मिनट लगते हैं । अभिक्रिया की सक्रियण ऊर्जा परिकलित कीजिए ।
(दिया गया है : $\log 2 = 0.3010$, $\log 4 = 0.6021$, R = $8.314 \, JK^{-1} \, mol^{-1}$)

A first order reaction is 50% completed in 40 minutes at 300 K and in 20 minutes at 320 K. Calculate the activation energy of the reaction. (Given : log 2 = 0.3010, log 4 = 0.6021, R = $8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)

- 14. क्या होता है जब
 - (a) किसी ताज़े बने Fe(OH)₃ के अवक्षेप को FeCl₃ विलयन की थोड़ी सी मात्रा के साथ हिलाया जाता है ?
 - (b) किसी कोलॉइडी विलयन का दीर्घस्थायी (लगातार) अपोहन किया जाता है ?
 - (c) किसी इमल्शन का अपकेंद्रण किया जाता है ?

What happens when

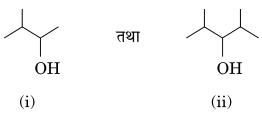
- (a) a freshly prepared precipitate of $Fe(OH)_3$ is shaken with a small amount of $FeCl_3$ solution ?
- (b) persistent dialysis of a colloidal solution is carried out ?
- (c) an emulsion is centrifuged ?
- 15. सोने के निष्कर्षण के प्रक्रम से सम्बद्ध रासायनिक अभिक्रियाएँ लिखिए । इस प्रक्रम में तनु NaCN और Zn की भूमिका की व्याख्या कीजिए ।

Write the chemical reactions involved in the process of extraction of Gold. Explain the role of dilute NaCN and Zn in this process.

- (a) Mn^{3+}/Mn^{2+} युग्म के लिए E^{0} का मान Fe^{3+}/Fe^{2+} के मान से बहुत अधिक धनात्मक होता है ।
- (b) कॉपर की कणन एन्थैल्पी की अपेक्षा आयरन की कणन एन्थैल्पी उच्चतर होती है।
- (c) जलीय विलयन में Sc^{3+} रंगहीन होता है जबकि Ti^{3+} रंगीन ।

56/1

3


3

3

^{16.} कारण दीजिए :

Give reasons :

- (a) E^{0} value for Mn³⁺/Mn²⁺ couple is much more positive than that for Fe^{3+}/Fe^{2+} .
- (b) Iron has higher enthalpy of atomization than that of copper.
- (c) Sc^{3+} is colourless in aqueous solution whereas Ti^{3+} is coloured.
- 17. (a) निम्नलिखित युग्म में किरेल अणु की पहचान कीजिए :

- (b) सोडियम धातु और शुष्क ईथर की उपस्थिति में जब क्लोरोबेन्ज़ीन की मेथिल क्लोराइड से अभिक्रिया की जाती है, तो बनने वाले उत्पाद की संरचना लिखिए।
- (c) 1-ब्रोमो-1-मेथिलसाइक्लोहेक्सेन के ऐल्कोहॉली KOH द्वारा विहाइड्रोहैलोजनन से बनने वाले ऐल्कीन की संरचना लिखिए।
- (a) Identify the chiral molecule in the following pair :

- (b) Write the structure of the product when chlorobenzene is treated with methyl chloride in the presence of sodium metal and dry ether.
- (c) Write the structure of the alkene formed by dehydrohalogenation of 1-bromo-1-methylcyclohexane with alcoholic KOH.
- 18. (A), (B) और (C) आण्विक सूत्र C₄H₈O वाले किसी कार्बोनिल यौगिक के तीन अचक्रीय अभिलक्षकी समावयव हैं । समावयव (A) और (C) सकारात्मक टॉलेन परीक्षण देते हैं जबकि समावयव (B) टॉलेन परीक्षण नहीं देता है लेकिन सकारात्मक आयोडोफॉर्म परीक्षण देता है । समावयव (A) और (B) Zn(Hg)/सान्द्र HCl से अपचयित होकर समान यौगिक (D) देते हैं ।
 - (a) (A), (B), (C) और (D) की संरचनाएँ लिखिए।
 - (b) समावयव (A), (B) और (C) में से कौन-सा HCN के संयोजन के प्रति न्यूनतम अभिक्रियाशील है ?

CLICK HERE

P.T.O.

3

(A), (B) and (C) are three non-cyclic functional isomers of a carbonyl compound with molecular formula C_4H_8O . Isomers (A) and (C) give positive Tollens' test whereas isomer (B) does not give Tollens' test but gives positive Iodoform test. Isomers (A) and (B) on reduction with Zn(Hg)/conc. HCl give the same product (D).

- (a) Write the structures of (A), (B), (C) and (D).
- (b) Out of (A), (B) and (C) isomers, which one is least reactive towards addition of HCN ?
- 19. निम्नलिखित अभिक्रियाओं में मुख्य उत्पादों की संरचनाएँ लिखिए :

(i)
$$\begin{array}{c} O \\ \square \\ \square \\ O \end{array} CH_2 - C - OCH_3 \\ \square \\ O \\ O \end{array} \xrightarrow{\text{NaBH}_4}$$

(ii)
$$CH = CH_2 + H_2O \xrightarrow{H^+}$$

(iii)
$$\overset{OC_2H_5}{\smile}$$
 + HI \longrightarrow

Write the structures of the main products in the following reactions :

Get More Learning Materials Here : 💻

56/1

🕀 www.studentbro.in

- 20. (a) बाइथायोनैल को साबुन में क्यों मिलाया जाता है ?
 - (b) आयोडीन का टिंक्चर क्या है ? इसका एक उपयोग लिखिए ।
 - (c) निम्नलिखित में से कौन-सा एक खाद्य परिरक्षक के रूप में कार्य करता है ?
 ऐस्पार्टेम, ऐस्पिरिन, सोडियम बेन्ज़ोएट, पैरासिटेमॉल
 - (a) Why is bithional added to soap ?
 - (b) What is tincture of iodine ? Write its one use.
 - (c) Among the following, which one acts as a food preservative ?Aspartame, Aspirin, Sodium Benzoate, Paracetamol
- 21. निम्नलिखित को एक-एक उदाहरण सहित परिभाषित कीजिए :
 - (a) पॉलिसैकैराइड
 - (b) विकृतीकृत प्रोटीन
 - (c) आवश्यक ऐमीनो अम्ल

अथवा

- (a) D-ग्लूकोस की सान्द्र नाइट्रिक अम्ल (HNO₃) के साथ अभिक्रिया करने पर बनने वाले उत्पाद को लिखिए।
- (b) ऐमीनो अम्ल उभयधर्मी व्यवहार दर्शाते हैं । क्यों ?
- (c) प्रोटीनों की α-हेलिक्स तथा β-प्लीटेड संरचनाओं में एक अन्तर लिखिए।

Define the following with an example of each :

- (a) Polysaccharides
- (b) Denatured protein
- (c) Essential amino acids

OR

- (a) Write the product when D-glucose reacts with conc. HNO_3 .
- (b) Amino acids show amphoteric behaviour. Why ?
- (c) Write one difference between α -helix and β -pleated structures of proteins.

56/1

CLICK HERE

>>

P.T.O.

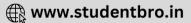
3

3

- 22. (a) निम्नलिखित उपसहसंयोजक यौगिक का सूत्र लिखिए : आयरन(III) हेक्सासायनोफेरेट(II)
 - (b) संकुल $[Co(NH_3)_5Cl]SO_4$ किस प्रकार की समावयवता प्रदर्शित करता है ?
 - (c) संकुल [CoF₆]³⁻ में संकरण और अयुग्मित इलेक्ट्रॉनों की संख्या लिखिए । (Co का परमाणु क्रमांक = 27)
 - (a) Write the formula of the following coordination compound : Iron(III) hexacyanoferrate(II)
 - (b) What type of isomerism is exhibited by the complex $[{\rm Co}({\rm NH}_3)_5{\rm Cl}]{\rm SO}_4$?
 - (c) Write the hybridisation and number of unpaired electrons in the complex $[CoF_6]^{3-}$. (Atomic No. of Co = 27)
- 23. कुछ खाद्य पदार्थों को क्रय करने के लिए श्याम एक पन्सारी (किराना) की दुकान पर गया । दुकानदार ने सभी पदार्थों को पॉलिथीन के थैलों में भरकर श्याम को दिया । लेकिन श्याम ने पॉलिथीन के थैलों को स्वीकार करने से मना कर दिया तथा दुकानदार को कहा कि पदार्थों को काग़ज़ के थैलों में भरकर दिया जाए । उसने दुकानदार को सूचित किया कि पॉलिथीन के थैलों के प्रयोग पर सरकार द्वारा भारी जुर्माना लगाया जाता है । दुकानदार ने भविष्य में पॉलिथीन के थैलों को जगह काग़ज़ के थैलों की जगह काग़ज़ के थैलों की जगह काग़ज़ के थैले प्रयोग करने का वादा किया ।

निम्नलिखित के उत्तर दीजिए :

- (a) श्याम द्वारा दर्शाए गए मूल्यों (कम-से-कम दो) को लिखिए।
- (b) अल्प घनत्व पॉलिथीन और उच्च घनत्व पॉलिथीन के बीच एक संरचनात्मक अन्तर लिखिए।
- (c) श्याम ने पदार्थों को पॉलिथीन के थैलों में लेने से क्यों मना कर दिया ?
- (d) जैव-निम्नीकरणीय बहुलक क्या है ? एक उदाहरण दीजिए ।


Shyam went to a grocery shop to purchase some food items. The shopkeeper packed all the items in polythene bags and gave them to Shyam. But Shyam refused to accept the polythene bags and asked the shopkeeper to pack the items in paper bags. He informed the shopkeeper about the heavy penalty imposed by the government for using polythene bags. The shopkeeper promised that he would use paper bags in future in place of polythene bags.

Answer the following :

(a) Write the values (at least two) shown by Shyam.

CLICK HERE

>>>

3

- (b) Write one structural difference between low-density polythene and high-density polythene.
- (c) Why did Shyam refuse to accept the items in polythene bags ?
- (d) What is a biodegradable polymer ? Give an example.
- 24. (a) कारण दीजिए :
 - (i) H₃PO₃ असमानुपातन अभिक्रिया देता है परन्तु H₃PO₄ नहीं देता ।
 - (ii) जब Cl_2 , F_2 के आधिक्य के साथ अभिक्रिया करती है, तो ClF_3 बनता है न कि FCl_3 ।
 - (iii) कक्ष ताप पर डाइऑक्सीजन एक गैस है जबकि सल्फर एक ठोस है।
 - (b) निम्नलिखित की संरचनाएँ आरेखित कीजिए :
 - (i) XeF₄
 - (ii) HClO₃

अथवा

- (a) जब सान्द्र सल्फ्यूरिक अम्ल को किसी परखनली में उपस्थित अज्ञात लवण पर डाला गया तो एक भूरी गैस (A) निकली । इस परखनली में ताँबे की छीलन डालने पर गैस निकलने की तीव्रता में वृद्धि हो गई । ठंडा करने पर गैस (A) एक रंगहीन ठोस (B) में परिवर्तित हो गई ।
 - (i) (A) और (B) की पहचान कीजिए।
 - (ii) (A) और (B) की संरचनाएँ लिखिए।
 - (iii) गैस (A) को ठंडा करने पर वह ठोस में क्यों परिवर्तित हो जाती है ?
- (b) निम्नलिखित को उनके अपचायक लक्षण के घटते हुए क्रम में व्यवस्थित कीजिए : HF, HCl, HBr, HI
- (c) निम्नलिखित अभिक्रिया को पूर्ण कीजिए :

 $XeF_4 + SbF_5 \longrightarrow$

56/1

CLICK HERE

>>>

5

- (a) Give reasons :
 - (i) H_3PO_3 undergoes disproportionation reaction but H_3PO_4 does not.
 - (ii) When Cl_2 reacts with excess of F_2 , ClF_3 is formed and not FCl_3 .
 - (iii) Dioxygen is a gas while Sulphur is a solid at room temperature.
- (b) Draw the structures of the following :
 - (i) XeF₄
 - (ii) HClO₃

OR

- (a) When concentrated sulphuric acid was added to an unknown salt present in a test tube a brown gas (A) was evolved. This gas intensified when copper turnings were added to this test tube. On cooling, the gas (A) changed into a colourless solid (B).
 - (i) Identify (A) and (B).
 - (ii) Write the structures of (A) and (B).
 - (iii) Why does gas (A) change to solid on cooling ?
- (b) Arrange the following in the decreasing order of their reducing character :

HF, HCl, HBr, HI

(c) Complete the following reaction :

 $XeF_4 + SbF_5 \longrightarrow$

25. (a) निम्नलिखित सेल के लिए सेल अभिक्रिया लिखिए और 298 K पर विद्युत्-वाहक बल (e.m.f.) परिकलित कीजिए :

 $Sn\left(s\right)\left|\right.Sn^{2+}\left(0{\cdot}004~M\right)\left|\right|~H^{+}\left(0{\cdot}020~M\right)\left|~H_{2}\left(g\right)\left(1~bar\right)\right|~Pt\left(s\right)$

(दिया गया है :
$$E_{Sn^{2+}/Sn}^{o} = -0.14 \text{ V}$$
)

(b) कारण दीजिए :

(i) E^{0} मानों के आधार पर, जलीय NaCl के विद्युत्-अपघटन में एनोड पर O_{2} गैस निकलनी चाहिए परन्तु Cl_{2} गैस निकलती है ।

>>>

(ii) CH₃COOH की चालकता तनूकरण पर घटती है।

अथवा

(a) 25°C पर अभिक्रिया

 $2 \text{AgCl}(s) + \text{H}_2(g) (1 \text{ atm}) \longrightarrow 2 \text{Ag}(s) + 2 \text{H}^+(0.1 \text{ M}) + 2 \text{Cl}^-(0.1 \text{ M})$ के लिए $\Delta \text{G}^0 = -43600 \text{ J}$ है । सेल का विद्युत्-वाहक बल (e.m.f.) परिकलित कीजिए । [log $10^{-n} = -n$]

- (b) ईंधन सेल को परिभाषित कीजिए और इसके दो लाभ लिखिए।
- (a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K : Sn (s) $|Sn^{2+}(0.004 \text{ M})||H^{+}(0.020 \text{ M})|H_{2}(g)(1 \text{ bar})|Pt(s)$

(Given :
$$E_{Sn^{2+}/Sn}^{o} = -0.14 \text{ V}$$
)

- (b) Give reasons :
 - (i) On the basis of E^{0} values, O_{2} gas should be liberated at anode but it is Cl_{2} gas which is liberated in the electrolysis of aqueous NaCl.
 - (ii) Conductivity of CH_3COOH decreases on dilution.

OR

- (a) For the reaction $2AgCl (s) + H_2 (g) (1 \text{ atm}) \longrightarrow 2Ag (s) + 2H^+ (0.1 \text{ M}) + 2Cl^- (0.1 \text{ M}),$ $\Delta G^0 = -43600 \text{ J at } 25^{\circ}\text{C}.$ Calculate the e.m.f. of the cell. $[\log 10^{-n} = -n]$
- (b) Define fuel cell and write its two advantages.
- 26. (a) निम्नलिखित से सम्बद्ध अभिक्रियाएँ लिखिए :
 - (i) हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया
 - (ii) डाइऐज़ोटीकरण
 - (iii) गैब्रियल थैलिमाइड संश्लेषण

56/1

CLICK HERE

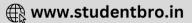
>>>

- (b) कारण दीजिए :
 - (i) जलीय विलयन में $(CH_3)_3N$ की तुलना में $(CH_3)_2NH$ अधिक क्षारकीय होती है।
 - (ii) ऐलिफैटिक डाइएज़ोनियम लवणों की अपेक्षा ऐरोमैटिक डाइएज़ोनियम लवण अधिक स्थायी होते हैं ।
 3+2=5

अथवा

(a) निम्नलिखित अभिक्रियाओं के मुख्य उत्पादों की संरचनाएँ लिखिए :

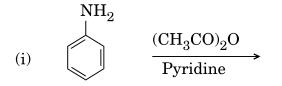
(i)
$$(CH_3CO)_2O \rightarrow CO$$


(ii)
$$\swarrow$$
 SO₂Cl $\xrightarrow{(CH_3)_2NH}$

(iii) $N_2^+ Cl^- \xrightarrow{CH_3 CH_2 OH}$

- (b) ऐनिलीन और N,N-डाइमेथिलऐनिलीन में विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए।
- (c) निम्नलिखित को उनके pK_b मानों के बढ़ते हुए क्रम में व्यवस्थित कीजिए : $C_6H_5NH_2$, $C_2H_5NH_2$, $C_6H_5NHCH_3$

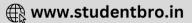
- (a) Write the reactions involved in the following :
 - (i) Hofmann bromamide degradation reaction
 - (ii) Diazotisation
 - (iii) Gabriel phthalimide synthesis



- (b) Give reasons :
 - (i) $(CH_3)_2NH$ is more basic than $(CH_3)_3N$ in an aqueous solution.
 - (ii) Aromatic diazonium salts are more stable than aliphatic diazonium salts.

OR

(a) Write the structures of the main products of the following reactions :


(ii)
$$(CH_3)_2NH \rightarrow SO_2Cl$$

(iii)
$$N_2^+Cl^ CH_3CH_2OH$$

- (b) Give a simple chemical test to distinguish between Aniline and N,N-dimethylaniline.
- (c) Arrange the following in the increasing order of their $\rm pK_b$ values : $C_6H_5NH_2,\ C_2H_5NH_2,\ C_6H_5NHCH_3$

Get More Learning Materials Here : 📕

Senior School Certificate Examination 2018 Marking Scheme ------ Chemistry

General Instructions

- The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are Suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the same meaning, such answers should be given full weight-age.
- 2. The Marking Scheme carries only suggested value point for the answers. These are only guidelines and do not constitute the complete answers. The students can have their own expression and if the expression is correct the marks will be awarded accordingly.
- 3. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been carried out as per the instruction given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed.
- 5. If a question has parts, please award marks in the right hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left hand margin and circled.
- 6. If a question does not have any parts, marks be awarded in the left-hand margin.
- 7. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 8. No Marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Separate marking schemes for all the three sets have been provided.
- 11. As per orders of the Hon'ble Supreme Court. The candidate would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All examiner/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.
- 12. The Examiners should acquaint themselves with the guidelines given in the Guidelines for sport Evaluation before starting the actual evaluation.
- 13. Every Examiner should stay upto sufficiently reasonable time normally 5-6 hours every day and evaluate 20-25 answer book and should minimum 15-20 minutes to evaluate each answer book

Get More Learning Materials Here : 📕

Marking Scheme - 2017-18

CHEMISTRY (043)/ CLASS XII

<u>56/1</u>

1Shows metal deficiency defect / It is a mixture of Fe^{2+} and $Fe^{3+}/Some Fe^{2+}$ ions are replaced by $Fe^{3+}/Some of the ferrous ions get oxidised to ferric ions.2Selectivity of a catalyst3Coordination Number = 6, Oxidation State = +24Benzyl chloride ;Due to resonance, stable benzyl carbocation is formed.53,3 - Dimethylpentan-2-ol6\Delta T_r = K_rM_2 \times 1000M_3 \times w_1= 1.86 \times 60 \times 1000180 \times 250= 2.48 K\Delta T_r = T_r^{-0} - T_r2.48 = 273.15 - T_rT_r = 270.67 K / 270.52 K / - 2.48 °C7Rate = \frac{1}{4} \frac{4(NO2)}{4(C)} = -\frac{1}{2} \frac{4(N_2O_5)}{4(c)}\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{4(N_2O_5)}{4(c)}\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{4(N_2O_5)}{4(c)}Rate of disappearance of N_2O_5 (-\frac{4(N_2O_5)}{4(c)}) = 1.4 × 10-3 M/s(Deduct half markif unit is wrong or not written)8(a)PH_3(b)NH_3(c)NH_3(d)BiH_3(COOHH_3O'9(a)CH_3CHO_(i)CH_3MgBr, Dry ether(ii)H_2O/H' CH_3CH(OH)CH_3 crosecondH_3O'CH_3COCH_3$	Marks
replaced by Fe ³⁺ / Some of the ferrous ions get oxidised to ferric ions. 2 Selectivity of a catalyst 3 Coordination Number = 6, Oxidation State = +2 4 Benzyl chloride ; Due to resonance, stable benzyl carbocation is formed. 5 3,3 - Dimethylpentan-2-ol 6 $\Delta T_r = K_r m$ $= K_r w_2 x1000$ $M_2 x w_1$ = 1.86 x 60 x 1000 180 x 250 = 2.48 K $\Delta T_r = T_r^{0} - T_r$ $2.48 = 273.15 - T_r$ $T_r = 270.67 K / 270.52 K / - 2.48 °C$ 7 $Rate = \frac{1}{4} \frac{4 (N02)}{A(t)} = -\frac{1}{2} \frac{4 (N_2 O_5)}{A(t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{4 (N_2 O_5)}{A(t)}$ Rate of disappearance of N ₂ O ₅ $(-\frac{4 (N_2 O_5)}{A(t)}) = 1.4 \times 10^{-3} \text{ M/s}$ (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO_(i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃	1
2 Selectivity of a catalyst 3 Coordination Number = 6, Oxidation State = +2 4 Benzyl chloride ; Due to resonance, stable benzyl carbocation is formed. 5 $3,3 - \text{Dimethylpentan-2-ol}$ 6 $\Delta T_r = K_r m$ $= K_r w_2 x 1000$ $M_2 X w_1$ $= 1.86 \times 60 \times 1000$ 180×250 = 2.48 K $\Delta T_r = T_r ^{\circ} - T_r$ $2.48 = 273.15 - T_r$ $T_r = 270.67 K / 270.52 K / - 2.48 °C$ 7 $Rate = \frac{1}{4} \frac{\Delta (N02)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$ Rate of disappearance of N ₂ O ₅ $(-\frac{\Delta (N_2 O_3)}{\Delta (t)}) = 1.4 \times 10^{-3} \text{ M/s}$ (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H [*] CH ₃ CH(OH)CH ₃ <u>Cro</u> CH ₃ COCH ₃	
3 Coordination Number = 6, Oxidation State = +2 4 Benzyl chloride ; Due to resonance, stable benzyl carbocation is formed. 5 3,3 - Dimethylpentan-2-ol 6 $\Delta T_r = K_r m$ $= K_r \frac{w_2 \times 1000}{M_2 \times w_1}$ $= 1.86 \times 60 \times 1000$ 180×250 = 2.48 K $\Delta T_r = T_r^{-} T_r$ $2.48 = 273.15 - T_r$ $T_r = 270.67 K / 270.52 K / - 2.48 °C$ 7 $Rate = \frac{1}{4} \frac{\Delta(N02)}{\Delta(t)} = -\frac{1}{2} \frac{\Delta(N_2 O_5)}{\Delta(t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta(N_2 O_5)}{\Delta(t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{\Delta(N_2 O_3)}{\Delta(t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ Cro ₃ CH ₃ COCH ₃	1
4 Benzyl chloride ; Due to resonance, stable benzyl carbocation is formed. 5 3,3 - Dimethylpentan-2-ol 6 $\Delta T_{f} = K_{f} m$ $= K_{f} \frac{w_{2} \times 1000}{M_{2} \times w_{1}}$ $= \frac{1.86 \times 60 \times 1000}{180 \times 250}$ = 2.48 K $\Delta T_{f} = T_{f}^{0} - T_{f}$ $2.48 = 273.15 - T_{f}$ $T_{f} = 270.67 K / 270.52 K / - 2.48 °C$ 7 $Rate = \frac{1}{4} \frac{d(NO2)}{4(t)} = -\frac{1}{2} \frac{d(N_{2}O_{5})}{d(t)}$ $= \frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{d(N_{2}O_{5})}{d(t)}$ Rate of disappearance of N ₂ O ₅ $(-\frac{d(N_{2}O_{5})}{d(t)}) = 1.4 \times 10^{-3} M/s$ (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H [*] CH ₃ CH(OH)CH ₃ <u>Cro₃</u> CH ₃ COCH ₃	- 1/2, 1/2
Due to resonance, stable benzyl carbocation is formed. 3,3 - Dimethylpentan-2-ol $\Delta T_{f} = K_{f} m$ $= K_{f} \frac{w_{2} \times 1000}{M_{2} \times w_{1}}$ $= \frac{1.86 \times 60 \times 1000}{180 \times 250}$ $= 2.48 K$ $\Delta T_{f} = T_{f} \circ - T_{f}$ $2.48 = 273.15 - T_{f}$ $T_{f} = 270.67 K / 270.52 K / - 2.48 °C$ $7 \qquad Rate = \frac{1}{4} \frac{d(NO2)}{d(t)} = -\frac{1}{2} \frac{d(N_{2}O_{5})}{d(t)}$ $= \frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{d(N_{2}O_{5})}{d(t)}$ Rate of disappearance of N ₂ O ₅ $\left(-\frac{d(N_{2}O_{5})}{d(t)}\right) = 1.4 \times 10^{-3} \text{ M/s}$ (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO_(i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H [*] CH ₃ CH(OH)CH ₃ <u>Cros</u> CH ₃ COCH ₃	1/2
$\begin{array}{l} 5 & 3,3 \text{ - Dimethylpentan-2-ol} \\ 6 & \Delta T_{\rm f} = {\rm K}_{\rm f} {\rm m} \\ & = {\rm K}_{\rm f} {\rm w}_2 {\rm x} 1000 \\ & {\rm M}_2 {\rm x} {\rm w}_1 \\ & = \frac{1.86 {\rm x} 60 {\rm x} 1000 }{180 {\rm x} 250} \\ & = 2.48 {\rm K} \\ \Delta T_{\rm f} = {\rm T}_{\rm f} {}^{\circ} {\rm T}_{\rm f} \\ 2.48 = 273.15 {\rm -} {\rm T}_{\rm f} \\ 2.48 = 273.15 {\rm -} {\rm T}_{\rm f} \\ & {\rm Z} {\rm x} {\rm z} {\rm z} 270.52 {\rm K} / {\rm -} 2.48 {}^{\circ}{\rm C} \\ \hline {\rm T}_{\rm f} = 270.67 {\rm K} / 270.52 {\rm K} / {\rm -} 2.48 {}^{\circ}{\rm C} \\ \hline \\ & {\rm Rate} = \frac{1}{4} \frac{4 ({\rm NO2})}{4 ({\rm c})} = {\rm -} \frac{1}{2} \frac{4 ({\rm N}_2 {\rm O}_5)}{4 ({\rm c})} \\ & {\rm 1}_4 (2.8 {\rm x} 10^{-3}) = {\rm -} \frac{1}{2} \frac{4 ({\rm N}_2 {\rm O}_5)}{4 ({\rm c})} \\ \hline \\ & {\rm Rate} {\rm of} {\rm disappearance} {\rm of} {\rm N}_2 {\rm O}_5 \left({\rm -} \frac{4 ({\rm N}_2 {\rm O}_5)}{4 ({\rm c})} \right) = 1.4 {\rm x} 10^{-3} {\rm M/s} \\ & {\rm (Deduct} {\rm half} {\rm mark} \\ {\rm if} {\rm unit} {\rm is} {\rm wrong} {\rm or} {\rm not} {\rm written}) \\ 8 & {\rm (a)} {\rm PH}_3 \\ {\rm (b)} {\rm NH}_3 \\ {\rm (c)} {\rm NH}_3 \\ {\rm (d)} {\rm BiH}_3 \\ \hline 9 & {\rm (a)} {\rm CH}_3 {\rm CHO} ({\rm i}) {\rm CH}_3 {\rm MgBr}, {\rm Dry ether({\rm ii}) {\rm H}_2 {\rm O/H}^+} {\rm COOH} \\ \end{array} \right $	1/2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{c} = k_{f} \frac{w_{2} \times 1000}{M_{2} \times w_{1}} \\ = \frac{1.86 \times 60 \times 1000}{180 \times 250} \\ = 2.48 \text{ K} \\ \Delta T_{f} = T_{f} \circ - T_{f} \\ 2.48 = 273.15 - T_{f} \\ T_{f} = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 \circ \text{C} \\ \hline \\ 7 \qquad \qquad$	
$ \begin{array}{c} $	1/2
$= \frac{1.86 \times 60 \times 1000}{180 \times 250}$ $= 2.48 \text{ K}$ $\Delta T_{f} = T_{f}^{\circ} - T_{f}$ $2.48 = 273.15 - T_{f}$ $T_{f} = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 ^{\circ}\text{C}$ $7 \qquad Rate = \frac{1}{4} \frac{d(NO2)}{A(t)} = -\frac{1}{2} \frac{d(N_{2}O_{5})}{A(t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{d(N_{2}O_{5})}{A(t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{d(N_{2}O_{5})}{A(t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO_(i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) (c)CH ₃ KMnO ₄ -KOH COCOH	
$= 2.48 \text{ K}$ $\Delta T_{f} = T_{f}^{\circ} - T_{f}$ $2.48 = 273.15 - T_{f}$ $T_{f} = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 ^{\circ}\text{C}$ $7 \qquad Rate = \frac{1}{4} \frac{4 (N02)}{A(t)} = -\frac{1}{2} \frac{4 (N_{2}O_{5})}{A(t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{4 (N_{2}O_{5})}{A(t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{4 (N_{2}O_{5})}{A(t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO_(i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b)	
$\Delta T_{f} = T_{f} \circ T_{f}$ $2.48 = 273.15 - T_{f}$ $T_{f} = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 \circ \text{C}$ $7 \qquad Rate = \frac{1}{4} \frac{\Delta (NO2)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2O_5)}{\Delta (t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2O_5)}{\Delta (t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{\Delta (N_2O_5)}{\Delta (t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) $8 \qquad (a)PH_3$ (b)NH ₃ (c)NH ₃ (d)BiH ₃ $9 \qquad (a)CH_3CHO (i)CH_3MgBr, Dry ether(ii)H_2O/H^{+} \qquad CH_3CH(OH)CH_3 CrO_3 \qquad CH_3COCH_3$ (b) (b) (c)CH ₃ <u>KMnO_4-KOH</u> $\sim COOH$	1/2
2.48 = 273.15 - T _f T _f = 270.67 K / 270.52 K / - 2.48 °C 7 Rate = $\frac{1}{4} \frac{\Delta(NO2)}{\Delta(t)} = -\frac{1}{2} \frac{\Delta(N_2O_5)}{\Delta(t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta(N_2O_5)}{\Delta(t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{\Delta(N_2O_5)}{\Delta(t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO_(i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ <u>CrO₃</u> CH ₃ COCH ₃ (b) (b) (c)CH ₃ <u>KMnO₄-KOH</u> COOH	1/2
$T_{f} = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 \text{ °C}$ $Rate = \frac{1}{4} \frac{4 (N02)}{A(t)} = -\frac{1}{2} \frac{4 (N_{2}0_{5})}{A(t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{4 (N_{2}0_{5})}{A(t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{4 (N_{2}0_{5})}{A(t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) $(2 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(3 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(4 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(4 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(5 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(6 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(7 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(7 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(8 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text{ M/s}$ $(9 + 1) = 1.4 \times 10^{-3} \text$	
7 $Rate = \frac{1}{4} \frac{\Delta (NO2)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2O_5)}{\Delta (t)}$ $\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2O_5)}{\Delta (t)}$ Rate of disappearance of N ₂ O ₅ ($-\frac{\Delta (N_2O_5)}{\Delta (t)}$) = 1.4 × 10 ⁻³ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ <u>CrO₃</u> CH ₃ COCH ₃ (b) (b) (c)CH ₃ <u>KMnO₄-KOH</u> COOH	
$\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$ Rate of disappearance of N ₂ O ₅ $(-\frac{\Delta (N_2 O_5)}{\Delta (t)}) = 1.4 \times 10^{-3}$ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) (b) (b) (CH ₃ <u>KMnO₄-KOH</u> COOH	1/2
$\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$ Rate of disappearance of N ₂ O ₅ $(-\frac{\Delta (N_2 O_5)}{\Delta (t)}) = 1.4 \times 10^{-3}$ M/s (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) (b) (b) (CH ₃ <u>KMnO₄-KOH</u> COOH	1/2
Rate of disappearance of N ₂ O ₅ $\left(-\frac{\Delta(N_2O_5)}{\Delta(t)}\right) = 1.4 \times 10^{-3} \text{ M/s}$ (Deduct half mark if unit is wrong or not written) 8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) (b)	
$(Deduct half mark if unit is wrong or not written)$ $8 (a)PH_3 \\ (b)NH_3 \\ (c)NH_3 \\ (d)BiH_3 $ $9 (a)CH_3CHO (i)CH_3MgBr, Dry ether(ii)H_2O/H^{+} CH_3CH(OH)CH_3 CrO_3 CH_3COCH_3 \\ (b) \\ (b) \\ (b) \\ CH_3 \underline{CH_3 CHO_4-KOH} (COOH)$	1/2
$\begin{array}{c c} & \text{if unit is wrong or not written)} \\ \hline 8 & (a)PH_3 \\ (b)NH_3 \\ (c)NH_3 \\ (d)BiH_3 \\ \hline 9 & (a)CH_3CHO (i)CH_3MgBr, Dry ether(ii)H_2O/H^{+} CH_3CH(OH)CH_3 CrO_3 CH_3COCH_3 \\ (b) \\ \hline & \swarrow CH_3 \underbrace{KMnO_4-KOH} for COOH \\ \hline \end{array}$	1
8 (a)PH ₃ (b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ <u>cro₃</u> CH ₃ COCH ₃ (b) (b) (b) (b) (COOH	
(b)NH ₃ (c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ <u>CrO₃</u> CH ₃ COCH ₃ (b) (b) (CH ₃ <u>KMnO₄-KOH</u> COOH	
(c)NH ₃ (d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) (b) $CH_3 \underline{CH_3} \underline{KMnO_4}KMnO_$	1/2
(d)BiH ₃ 9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ Cro ₃ CH ₃ COCH ₃ (b) (b) $CH_3 \underline{CH_3} \underline{KMnO_4}KMnO_$	1/2
9 (a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) $CH_3 \xrightarrow{CH_3} \underline{KMnO_4} \xrightarrow{KOH} \underbrace{COOH}$	1/2
(b) $CH_3 \xrightarrow{KMnO_4-KOH} COOH$	1/2
$CH_3 \xrightarrow{KMnO_4-KOH} COOH$	1
$ \begin{array}{c} & \xrightarrow{\text{KMnO}_4\text{-KOH}} \end{array} $	
H ₃ O ⁺	1
	-
(or any other correct metho	1)
OR	

Get More Learning Materials Here : 📕

	<u>Б. 4</u> у	
	d^5 to d^4)	
	(b)Due to higher number of unpaired electrons.	1
	(c)Absence of unpaired d- electron in Sc^{3+} whereas in Ti ³⁺ there is one unpaired	1
	electron or Ti ³⁺ shows d-d transition.	
17		1
	(a) (i) / ^{он}	
	(b)	1
	CH ₃	1
	(c)	1
	CH ₃	
	∽ or ∽	
18	(a)	
	$A = CH_3CH_2CHO$	1/2
	$B = CH_3COCH_2CH_3$	1/2
	$C = (CH_3)_2 CHCHO$	1/2
	$D = CH_3CH_2CH_2CH_3$	1/2
	(b) B	
		1
19.		
	(i)	
	ОН	1
	CH ₂ -C-OCH ₃	_
	Ö	1
	(ii) $C_6H_5CH(OH)CH_3$	1
	(iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)	1
20.	a) To impart antiseptic properties	1
	b) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved in	1/2 , 1/2
	alcohol, used as an antiseptic/ applied on wounds.	1
	c) Sodium benzoate / Aspartame	
21	(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /	1/2
	large number of monosaccharides units joined together by glycosidic linkage	
	Starch/ glycogen/ cellulose (or any other)	1/2
	(b)Proteins that lose their biological activity / proteins in which secondary and	1/2
	tertiary structures are destroyed	1/2
	Curdling of milk (or any other)	1/2
	(c)Amino acids which cannot be synthesised in the body.	1/2
	Valine / Leucine (or any other)	72
	OR	
21	(a)Saccharic acid / COOH-(CHOH) ₄ -COOH	1
	(b)Due to the presence of carboxyl and amino group in the same molecule / due to	1
	formation of zwitter ion or dipolar ion.	
	(c) α - helix has intramolecular hydrogen bonding while β pleated has intermolecular	1
	hydrogen bonding / α - helix results due to regular coiling of polypeptide chains	-
		1

Get More Learning Materials Here : 📕

	(b) Low density polythone is highly branched while high density polythone is linear	4		
	(b) Low density polythene is highly branched while high density polythene is linear.(c) As it is non-biodegradable .	1 1		
	(d) Which can be degraded by microorganisms, eg <i>PHBV(or any other correct</i>	1 1/2,1/2		
	example)			
24	a) (i) In +3 oxidation state of phosphorus tends to disproportionate to higher and	1		
	lower oxidation states / Oxidation state of P in H_3PO_3 is +3 so it undergoes			
	disproportionation but in H_3PO_4 it is +5 which is the highest oxidation state, so it cannot.	1		
	(ii) F cannot show positive oxidation state as it has highest electronegativity/	1		
	Because Fluorine cannot expand its covalency / As Fluorine is a small sized	1		
	atom, it cannot pack three large sized Cl atoms around it.	-		
	(iii) Oxygen has multiple bonding whereas sulphur shows catenation / Due to			
	$p\pi$ - $p\pi$ bonding in oxygen whereas sulphur does not / Oxygen is diatomic			
	therefore held by weak intermolecular force while sulphur is polyatomic held by			
	strong intermolecular forces.			
	b) (i) (ii)			
		1, 1		
	F	1,1		
	Xe			
	F			
	OR			
24	a) (i) $A = NO_2$, $B = N_2O_4$	1/2, 1/2		
	(ii)			
	0,00	1/2 , 1/2		
	(iii) Because NO_2 dimerises to N_2O_4 / NO_2 is an odd electron species.	1		
	b) $HI > HBr > HCl > HF$	1		
		1		
25	c) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$ (a) $Sn + 2 H^+ \rightarrow Sn^{2+} + H_2$ (Equation must be balanced)	1		
25		1		
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1/2		
	$= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$	1/2		
	$= 0.14 - 0.0295 \log 10 = 0.11 \text{ V} / 0.1105 \text{ V}$	1		
	(b) (i) Due to every stantial/ Overveltage of O			
	(b) (i) Due to overpotential/ Overvoltage of O₂(ii) The number of ions per unit volume decreases.	1		
	OR	1		
ļ		1		
	ore Learning Materials Here : 🌉 🗲 🔼 🖉 🖉 🌐 🌐 🕀 www.studentbro			

	·	
	= 0.226 + 0.118 = 0.344 V (Deduct half mark if unit is wrong or not written)	1
	 b) Cells that convert the energy of combustion of fuels (like hydrogen, methane, methanol, etc.) directly into electrical energy are called fuel cells. Advantages : High efficiency, non polluting (or any other suitable advantage) 	1/2 ,1/2
26	(a)(i) Ar/ R-CONH ₂ + Br ₂ + 4 NaOH \rightarrow Ar/ R-NH ₂ + 2NaBr + Na ₂ CO ₃ + 2 H ₂ O (ii)	1
	$C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5 N_2 Cl + NaCl + 2H_2O$	1
	(iii) (or any other correct equation)	
	$ \bigcirc \overset{O}{\underset{O}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset$	
	$ \begin{array}{c} O \\ O \\ O \\ C \\ O \\ O \\ O \\ O \\ O \\ O \\$	1
	(b)(i)Because of the combined factors of inductive effect and solvation or hydration effect	1
	(ii)Due to resonance stabilisation or structural representation / resonating structures.	1
	OR	
26	(a) (i) C ₆ H₅NHCOCH ₃	1
	(ii) $C_6H_5SO_2N(CH_3)_2$	1
	(iii) C ₆ H ₆	1
	(b) Add chloroform in the presence of KOH and heat , Aniline gives a offensive smell while N,N dimethylaniline does not. (or any other correct test) (c) $C_2H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$	1
		1

Get More Learning Materials Here :

